

Computational neuroscience: biophysics – Lecture 8

EPFL, 2024

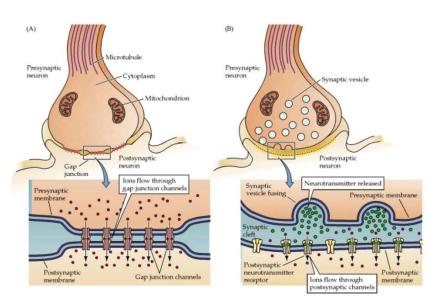
Synapses

Lecture Overview

- Scope
- Approaches
- Applications

Lecture Overview

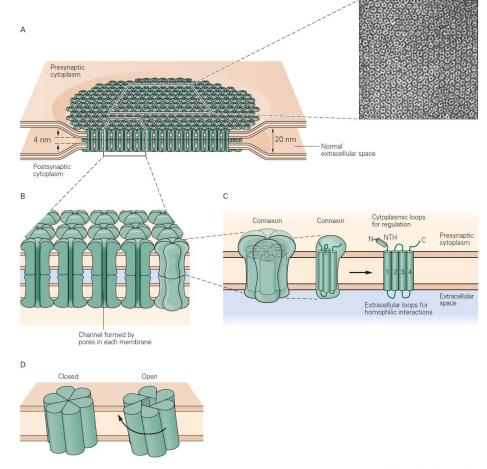
- Scope
- Approaches
- Applications


Synapse

- Definition: the point at which one neuron communicates with another (Charles Sherrington)
- Two types of synapses: electrical and chemical

Table 8-1 Distinguishing Properties of Electrical and Chemical Synapses

Type of synapse	Distance between pre- and postsynaptic cell membranes	Cytoplasmic continuity between pre- and postsynaptic cells	Ultrastructural components	Agent of transmission	Synaptic delay	Direction of transmission
Electrical	4 nm	Yes	Gap-junction channels	Ion current	Virtually absent	Usually bidirectional
Chemical	20–40 nm	No	Presynaptic vesicles and active zones; postsynaptic receptors	Chemical transmitter	Significant: at least 0.3 ms, usually 1–5 ms or longer	Unidirectional

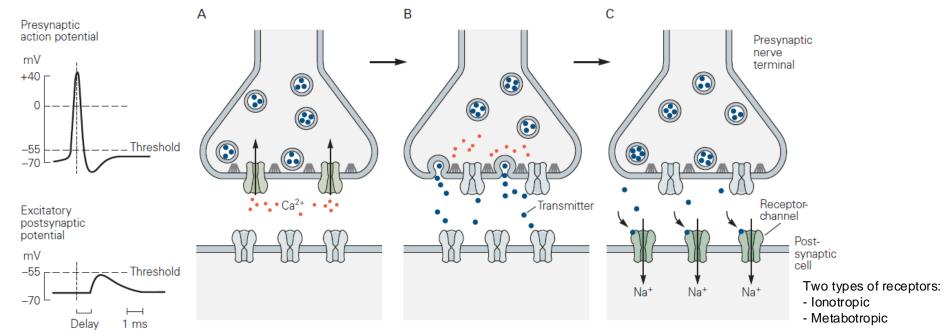

Principles of Neural Science, Kandel et al.

Neuroscience, Purves et al.

Electrical synapse

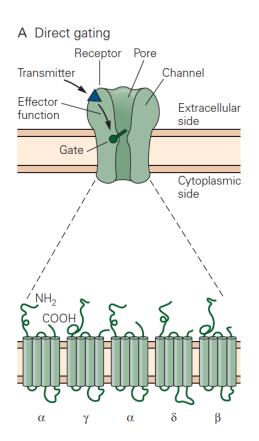
- Cytoplasmic continuity
- Through gap junction channels
- Faster
- Bidirectional
- 'simpler'
- Fast motor responses or population activity
 synchronization

Kandel et al.

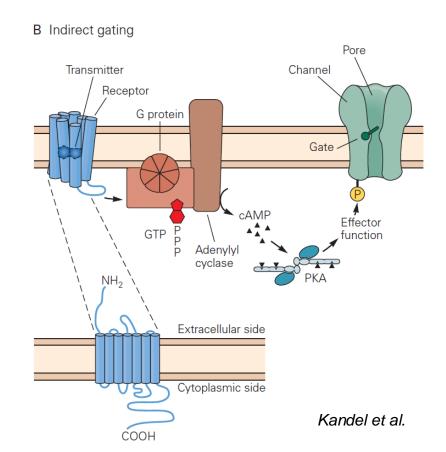

Chemical synapse

- No cytoplasmic continuity
- Through presynaptic vesicles, active zones and postsynaptic receptors

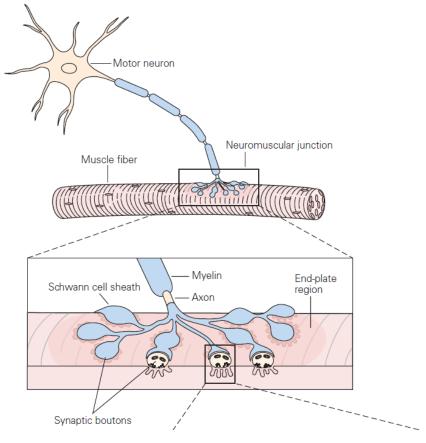
Slower


- Unidirectional
- 'more complex'

 They can produce changes in the postsynaptic cell


Chemical synapse: ionotropic receptors

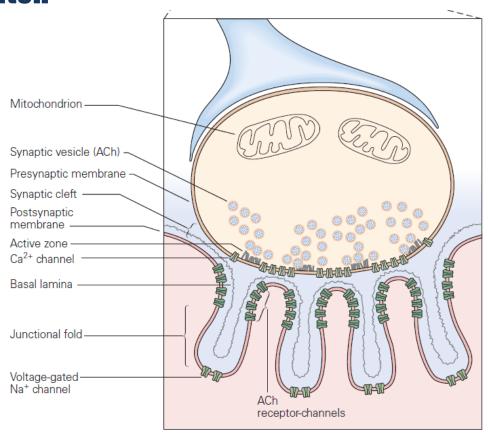
- Direct gating
- Fast synaptic actions (ms)
- Circuits that mediate rapid behaviors as stretch receptor reflex

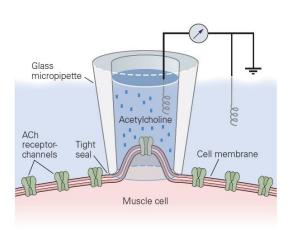

Chemical synapse: metabotropic receptors

- Indirect gating
- Slow synaptic actions (sec to min)
- Channel activation through intracellular cascade
- Can modulate the strength of the synapse
- In circuits related to learning

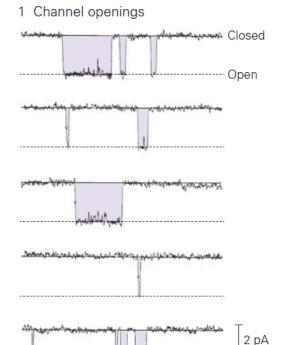
Example: the neuromuscular junction

- José del Castillo and Bernard Katz studied the neuromuscular junction
- Their results can be generalized to the other synapses in the CNS
- Each motor neuron makes several contacts (boutons) on the muscle

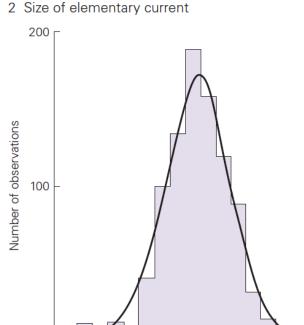



Neuromuscular junction: one bouton

- Each bouton forms a synapse
- Both pre- and post-synaptic membranes are specialized structures
- Vesicles are released at the level of active zones



Neuromuscular junction: receptors

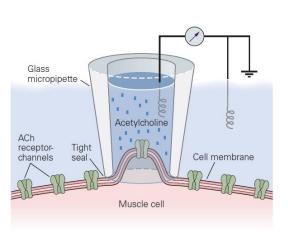

nicotinic acetylcholine receptors (nAChRs) are stochastic

B Single-channel currents

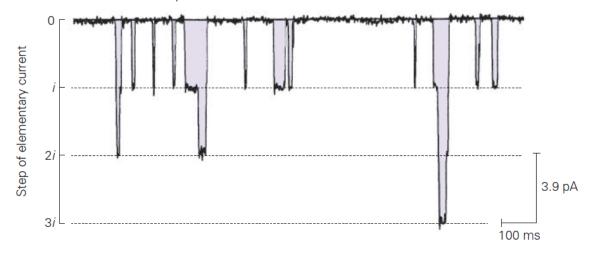
20 ms

-2.5

Kandel et al.


-2.7

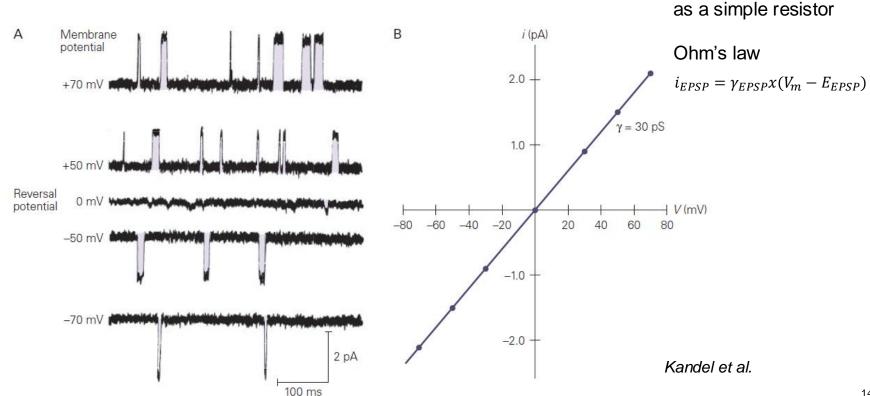
Size of elementary current step (pA)


-2.9

Neuromuscular junction: receptors

nicotinic acetylcholine receptors (nAChRs) are stochastic

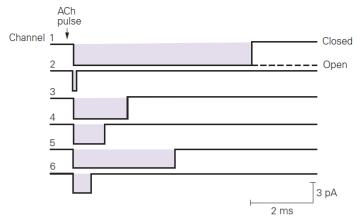
C Total ionic current in a patch of membrane



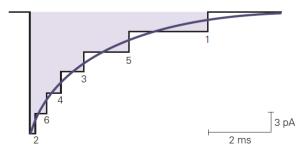
Kandel et al.

Neuromuscular junction: I-V curve

The current has a linear relationship with voltage



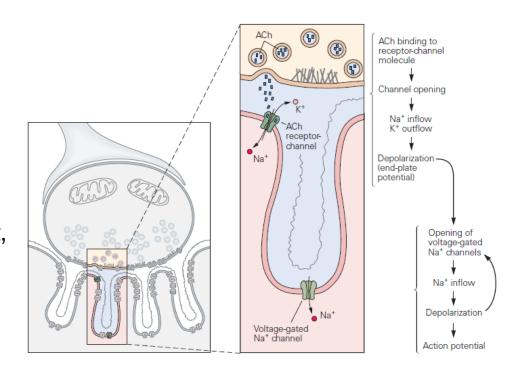
The channel behaves

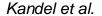

Neuromuscular junction: many channels

While each receptor is stochastic, the average current through many channels in response to a pulse of acetylcholine has a consistent shape

A Idealized time course of opening of six ion channels

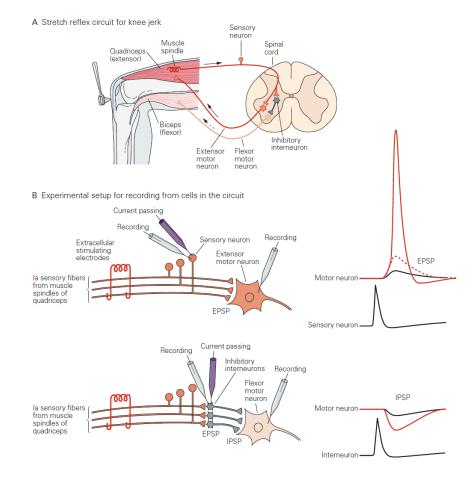
B Total current of the six channels




Kandel et al.

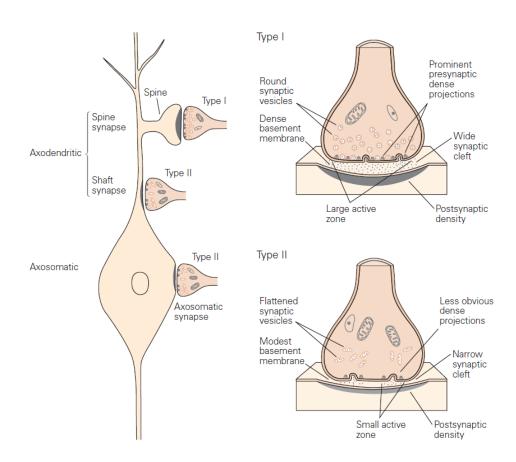
Neuromuscular junction: one active zone

- nAChRs allow the entrance of Na+ and the exit of K+
- At the resting membrane potential, the net current tends to depolarize the membrane
- If the depolarization is sufficient, it can trigger an action potential via voltage-gated sodium channels



Chemical synapses in CNS

- In the CNS, we have two major types of chemical synapses: excitatory and inhibitory
- Excitatory synapses generate excitatory post-synaptic potentials (EPSPs or EPSCs)
- Inhibitory synapses generate inhibitory post-synaptic potentials (IPSPs or IPSCs)

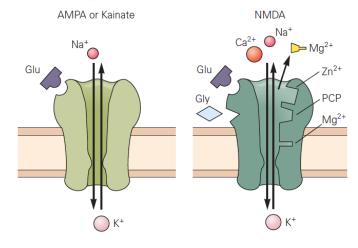


Kandel et al.

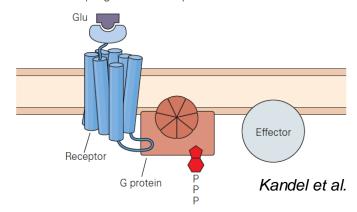
Chemical synapses in CNS

- Excitatory synapses are also called Gray type I and use glutamate as neurotransmitter
- Inhibitory synapses are also called Gray type II and use GABA as neurotransmitter

Kandel et al.

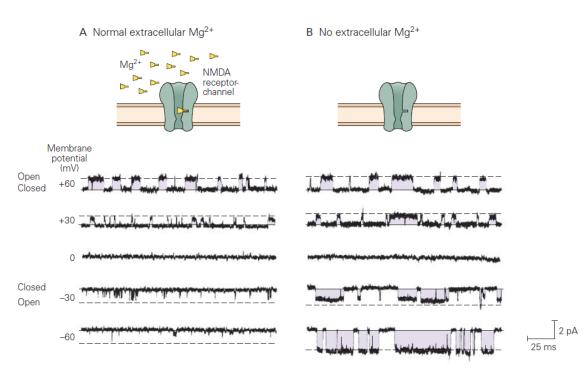

Synaptic behaviour characterization

Neurotransmitter	Receptor	Type	Comments	
Glutamate	AMPA	Ionotropic	Very fast	
(excitatory)	NMDA	Ionotropic	Voltage-dependent	
	mGlu	Metabotropic	IP ₃ coupled	
GABA	$GABA_A$	Ionotropic	Fast inhibition	
(inhibitory)	GABA _B	Metabotropic	Slow inhibition	
Acetylcholine	Nicotinic	Ionotropic	Neuromuscular junction	
Acetylcholine	m1 - m5			
Noradrenaline	α_1, α_2			
TNOT aut chainte	β_1 , β_2	Metabotropic	Many effects coupled to second messengers	
Serotonin	5HT ₁ et al.	Metabotropic		
Dopamine	D1 - D5			
Histamine	H1, H2			


Glutamatergic synapses

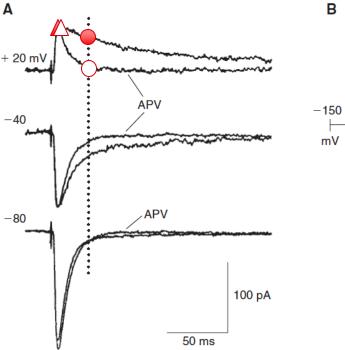
- Glutamatergic receptors can be ionotropic or metabotropic
- Ionotropic receptors are AMPAR and NMDAR

A lonotropic glutamate receptor


B Metabotropic glutamate receptor

NMDA receptors

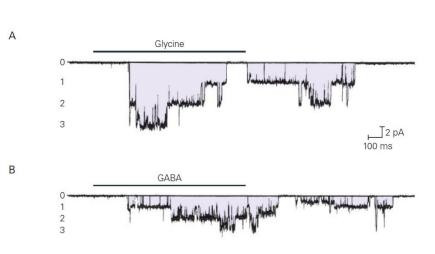
- At resting membrane potential Mg2+ blocks the NMDARs
- Depolarization releases the Mg block
- Note the reversal potential at 0 mV

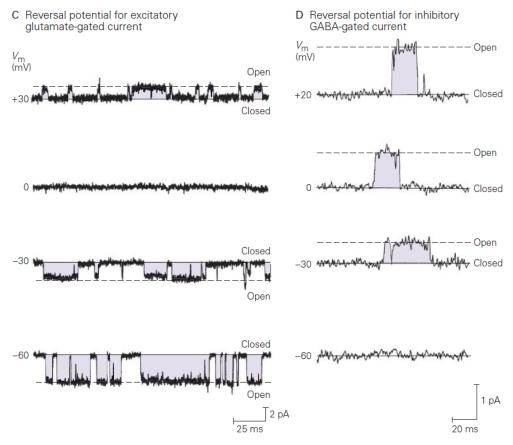


Kandel et al.

AMPA and **NMDA** receptors

- AMPAR and NMDAR currents made evident using the NMDAR blocker APV
- Triangle: V at the peak, circle: V at dot line in A, filled: control, open: APV





Hippocampus book

GABA, receptors

GABA_A receptor is an ionotropic receptor that directly opens a Cl-channel

Kandel et al.

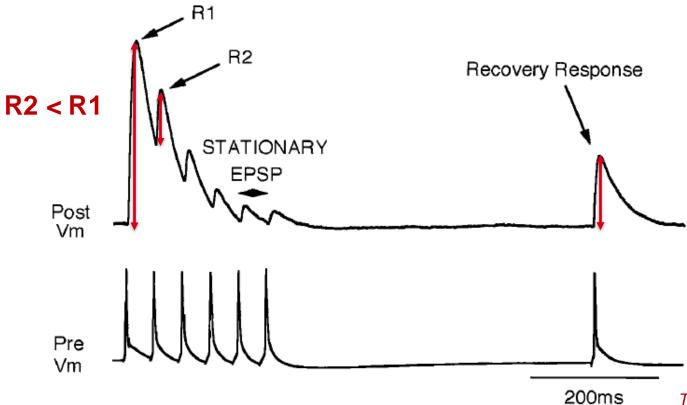
Synaptic plasticity

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased"

Donald Hebb 1949

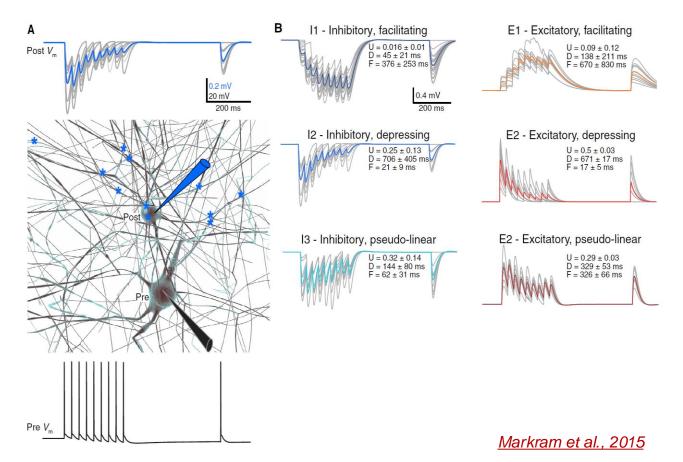
TABLE 13.1
Different Forms of Synaptic Plasticity

Phenomenon	Duration	Locus of induction	
Short-term enhancement			
Paired-pulse facilitation (PPF)	100 msec	Pre	
Augmentation	10 sec	Pre	
Posttetanic potentiation (PTP)	1 min	Pre	
Long-term enhancement			
Short-term potentiation (STP)	15 min	Post	
Long-term potentiation (LTP)	>30 min	Pre and post	
Depression			
Paired-pulse depression (PPD)	100 msec	Pre	
Depletion	10 sec	Pre	
Long-term depression (LTD)	>30 min	Pre and post	

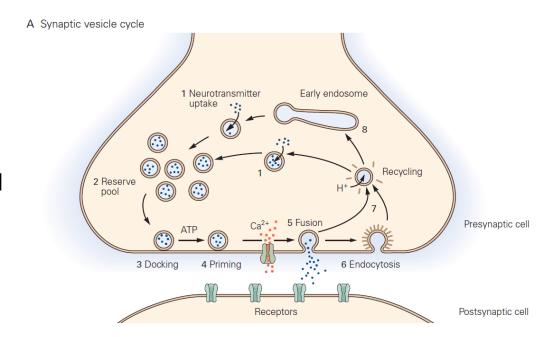

Synaptic plasticity occurs across many time scales. This table lists some of the better studied forms of plasticity together with a very approximate estimate of their associated decay constants, and whether the conditions required for induction depend on pre- or postsynaptic activity, or both. This distinction is crucial from a computational point of view, since Hebbian learning rules require a postsynaptic locus for the induction of plasticity. Note that for LTP and LTD, we are referring specifically to the form found at the Schaffer collateral input to neurons in the CA1 region of the rodent hippocampus; other forms have different requirements.

Koch, 2004

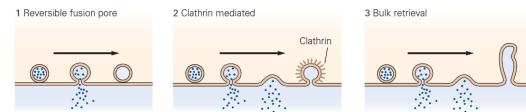
Definition: change in synaptic strength over time



Short-term plasticity (STP)


Tsodyks and Markram, 1997

Short-term plasticity: synaptic dynamics



Short-term plasticity

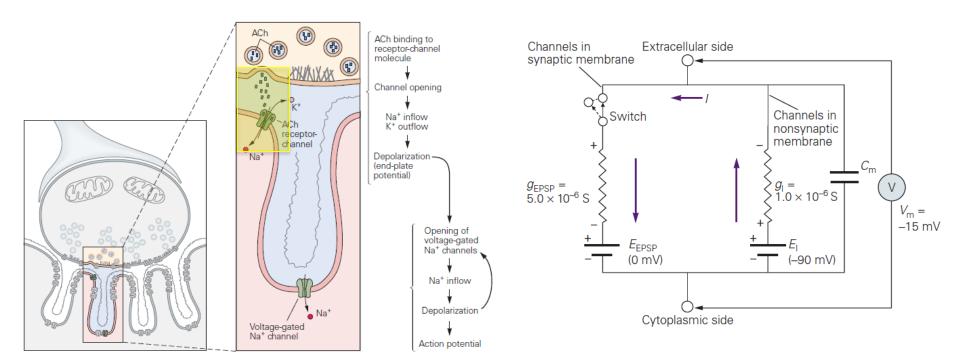
- Short-term plasticity can be explained by two competing factors: vesicle depletion and accumulation of Ca²⁺
- If one of the two factors
 prevails, we have facilitation
 or depression

B Mechanisms for recycling synaptic vesicles

Kandel et al.

Summary 1

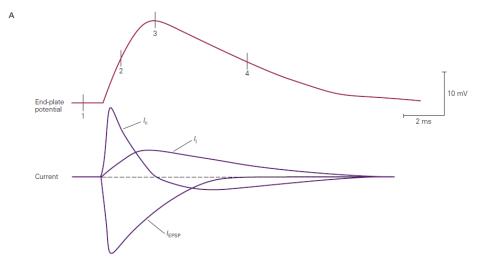
- There is a multitude of synapses in the brain, each characterized by specific neurotransmitters, receptors, pre- and post-synaptic mechanisms, types of plasticity
- We will focus on glutamatergic and GABAergic ionotropic receptors, and short-term plasticity
- The complex synaptic mechanisms and their stochastic nature require extensive resources if we want to simulate them in large networks
- We will take a phenomenological approach to model the synapses

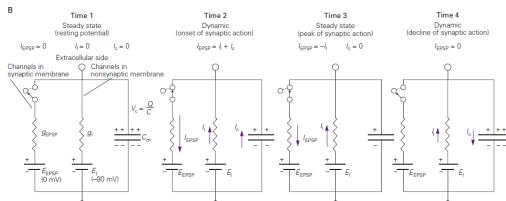


Lecture Overview

- Scope
- Approaches
- Applications

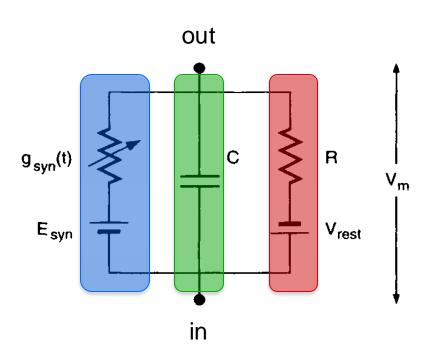
Synapse as an equivalent circuit





Synapse as an equivalent circuit

Cytoplasmic side

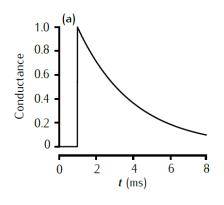

Kandel et al.

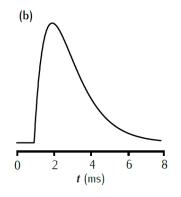
Synapse as an equivalent circuit: excitatory and inhibitory synapse

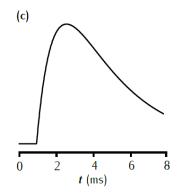
Synapse as an equivalent circuit: equations

$$I_{\text{syn}} = g_{\text{syn}}(t)(V_m(t) - E_{\text{syn}})$$

$$C\frac{dV_m}{dt} + g_{\text{syn}}(t)(V_m - E_{\text{syn}}) + \frac{V_m - V_{\text{rest}}}{R} = 0$$


$$\tau \frac{dV_m}{dt} = -(1 + Rg_{\text{syn}}(t))V_m + Rg_{\text{syn}}(t)E_{\text{syn}} + V_{\text{rest}}$$

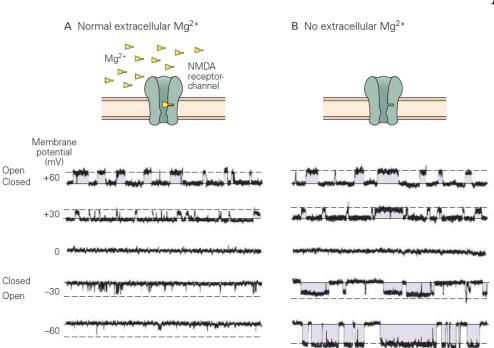

$$\tau = RC$$



Synapse as an equivalent circuit: g_syn

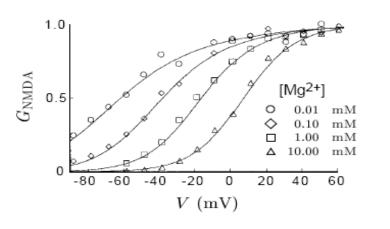
(a) single exponential decay (b) alpha function (Rall, 1967) (c) dual exponential function

(a)
$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \exp\left(-\frac{t - t_{\text{s}}}{\tau}\right)$$


(b)
$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \frac{t - t_{\text{s}}}{\tau} \exp\left(-\frac{t - t_{\text{s}}}{\tau}\right)$$

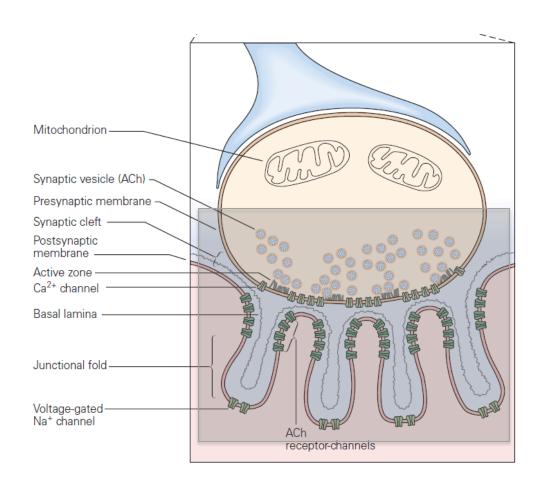
$$g_{syn}$$
= conductance at the peak t_s = time of release of neurotransmitter

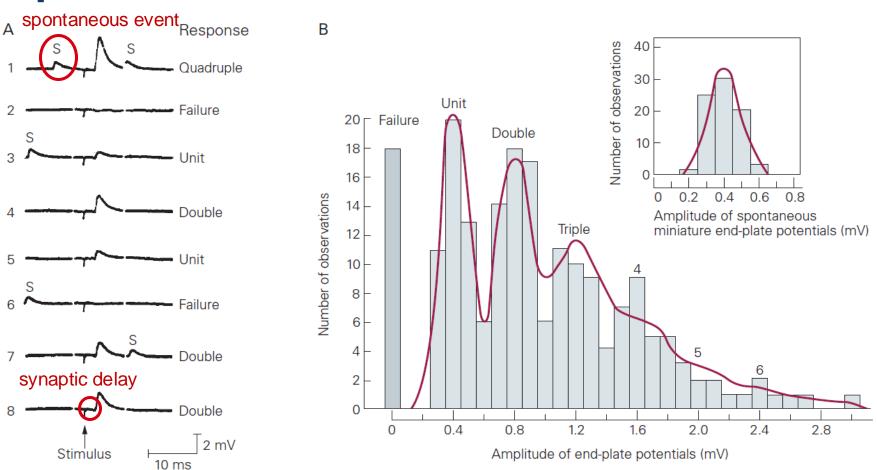
(c)
$$g_{\text{syn}}(t) = \overline{g}_{\text{syn}} \frac{\tau_1 \tau_2}{\tau_1 - \tau_2} \left(\exp\left(-\frac{t - t_s}{\tau_1}\right) - \exp\left(-\frac{t - t_s}{\tau_2}\right) \right)$$



Synapse as an equivalent circuit: NMDAR

$$I_{Syn} = G_{NMDA}([Mg^{2+}], V)g(t)(V - E_{rev})$$


$$G_{\text{NMDA}} = \left(1 + \frac{[\text{Mg}^{2+}]}{3.57 \text{ mM}} \exp(V/16.13 \text{ mV})\right)^{-1}$$


Jahr and Stevens, 1990

How can we model several active zones?

Experimental behaviour of several active zones

Modelling several active zones: Quantal release model

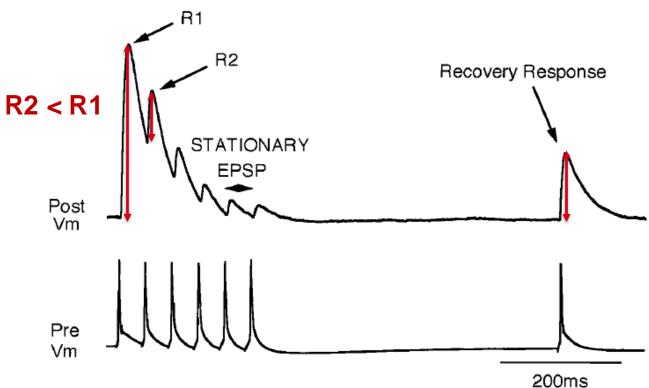
- Neurotransmitters are released into a synapse in packaged vesicles called quanta
- One quantum generates what is known as a miniature end plate potential (MEPP), which is the smallest amount of stimulation that one neuron can send to another neuron
- Each synapse has a number of independent release sites (n)
- Each site releases a single quantum (vesicle) with probability of release p
- The number of released vesicles obeys a binomial distribution

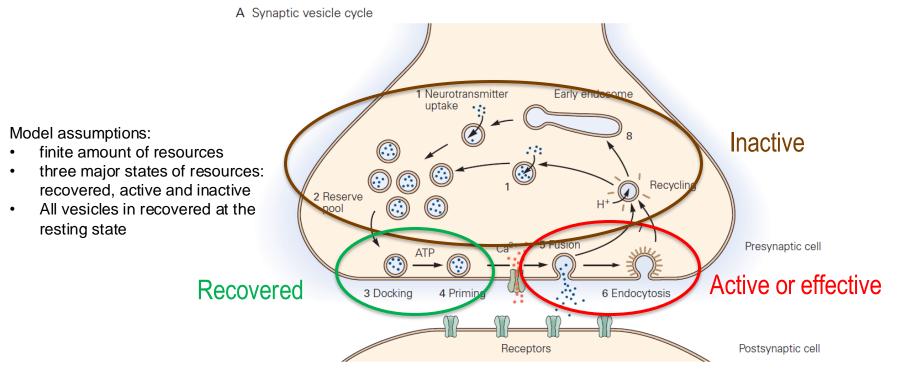
$$p(n,k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}$$
 Probability of releasing k quanta

Modelling several active zones: Quantal release model

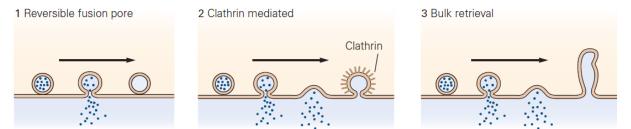
Probability of releasing
$$k$$
 quanta $\longrightarrow p(n, k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}$

Mean released quanta $\longrightarrow \langle k \rangle = np$


R = mean synaptic response
$$\longrightarrow$$
 $R = npq$ (q = unitary postsynaptic effect of the synapse)


q can be the peak conductance, the maximal synaptic current at some potential, or the peak EPSP. R varies accordingly

Total conductance
$$\xrightarrow{\text{R as g(t)}}$$
 $g(t) = np\gamma(t)$ ($\gamma = \text{single channel conductance}$)


$$I_S = np\gamma(t)(V - E_S)$$

Short-term depression: Tsodyks and Markram's model

B Mechanisms for recycling synaptic vesicles

Kandel et al.

Short-term depression: Tsodyks and Markram's model

The model assumes that there is a limited amount of resources.

• x = reserve pool of resources (vesicles)

 z = pool of inactive resources from which you can recover resources

Resources in state:

$$\frac{dx}{dt} = \frac{z}{\tau_{rec}} - U_{SE}x(t_{sp})\partial(t - t_{sp})$$

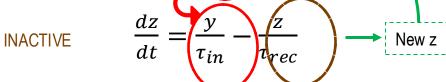
when an AP occurs (fixed).

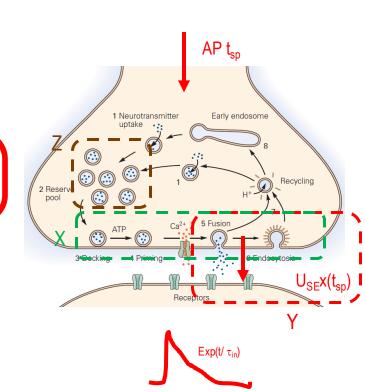
•
$$\tau_{\text{in}}$$
 = how long it takes to inactivate the used resources (~ 1 ms)

INACTIVE

$$= \frac{y}{z} - \frac{z}{z}$$

$$\frac{dy}{dt} = -\frac{y}{\tau_{in}} + U_{SE}x(t_{Sp})\partial(t - t_{Sp}) \cdot \tau_{rec} = \text{how long it takes until the synapse is as strong}$$
as before the first AP arrived (~ 100 ms)
$$U_{SE} = \text{which percentage of resources are released}$$

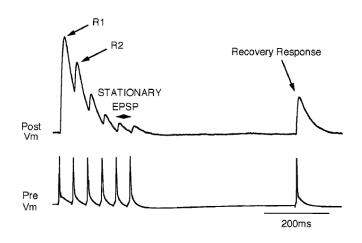

$$\frac{dz}{dt} = \frac{y}{\tau_{in}} - \frac{z}{\tau_{rec}}$$


•
$$\partial(t-t_{sp})$$
 = delta function, cero all the time but 1 when a spike occurs.

Resources in state:

RED
$$\frac{dx}{dt} = \frac{z}{\tau_{rec}} - U_{SE} x(t_{sp}) \partial (t - t_{sp})$$

$$\frac{dy}{dt} = \left(-\frac{y}{\tau_{in}}\right) + U_{SE}x(t_{sp})\partial(t - t_{sp})$$



Short-term depression: Tsodyks and Markram's model

Solution to reconstruct the excitatory postsynaptic current

$$EPSC_{n+1} = EPSC_n(1 - U_{SE})e^{-\Delta t/\tau_{rec}} + A_{SE} \cdot U_{SE}(1 - e^{-\Delta t/\tau_{rec}}),$$

 A_{SE} = absolute synaptic efficacy (all resources in effective state) Δt = time interval between nth and (n + 1)th AP

Tsodyks and Markram, 1997

 Δt was assumed to be much larger than the inactivation time constant, hence the dependence on t_{inact} dropped out of this equation

TM-model: synaptic depression + facili

% of resources used. no longer constant

Intracellular flow of Ca²⁺ Extracellular flow of Ca²⁺ (facilitation) AP
$$U_{SE}^1 = U_{SE}^1(t)(1-U_{SE}) + U_{SE}$$

Facilitation factor

Resources in state:

RECOVERED
$$\frac{dx}{dt} = \frac{z}{\tau_{rec}} - U_{SE}^{1} x(t_{sp}) \partial(t - t_{sp})$$

ACTIVE
$$\frac{dy}{dt} = -\frac{y}{\tau_{in}} - U_{SE}^{1} x(t_{sp}) \partial(t - t_{sp})$$

INACTIVE
$$\frac{dz}{dt} = \frac{y}{\tau_{in}} - \frac{z}{\tau_{rec}}$$

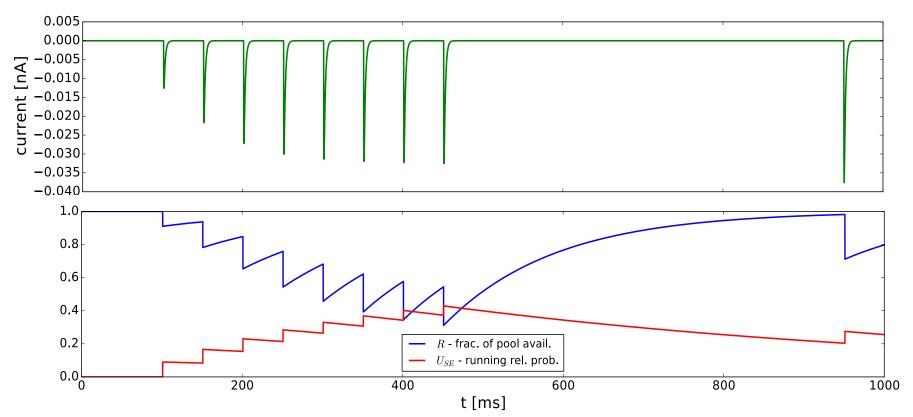
$\frac{dU_{SE}^{1}}{dt} = -\frac{dU_{SE}^{1}}{\tau_{fac}} + U_{SE}(1 - U_{SE}^{1})\partial(t - t_{sp})$ **FACILITATION**

The use of transmitter goes up or down every time there is a spike

Output, post-synaptic current:

$$I_{\scriptscriptstyle S}(t) = A_{\scriptscriptstyle SE} y(t)$$

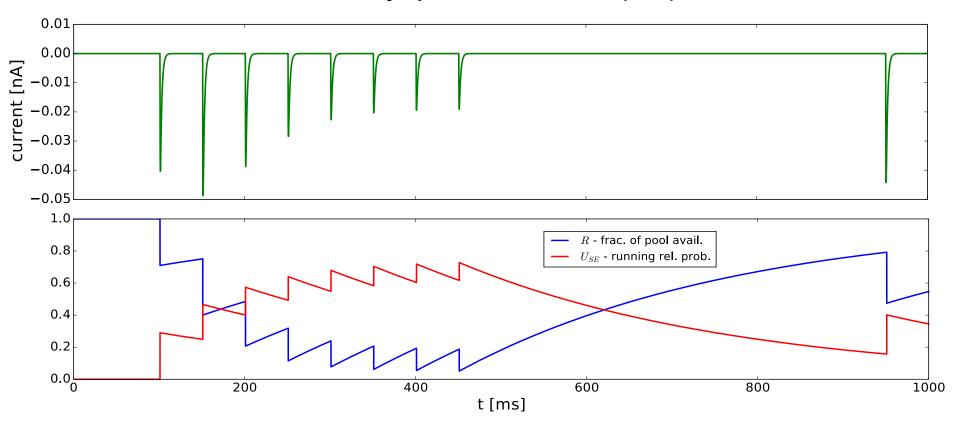
 A_{SF} = absolute synaptic efficacy (all vesicles released)


Tsodyks et al., 1998

Introduce short-term facilitation

Increase in U_{SE} could reflect, for example, the accumulation of calcium ions caused by spikes arriving in the presynaptic terminal, which is responsible for the release of neurotransmitter (Bertram, Sherman,&Stanely, 1996). For a simple kinetic scheme, assume that an AP causes a fraction of U_{SE} calcium channels to open, which subsequently close with a time constant of τ_{facil} . The fraction of opened calcium channels determines the current value of U_{SE}^1 .

Excitatory, facilitating (E1)



Excitatory, depressing (E2)

Excitatory, pseudo linear (E3)

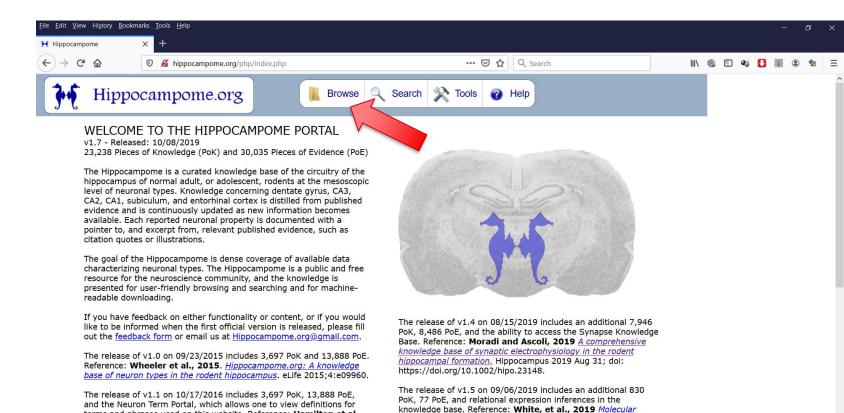
Summary 2

- Phenomenological models of synapses and short-term plasticity
- Even if the model should be considered phenomenological, they mimic biophysical mechanisms: accumulation of calcium and vesicle depletion in the presynaptic terminal, and neurotransmitter receptors in postsynaptic terminal
- Those can be combined with multi-compartimental models of single neurons to create networks

Lecture Overview

- Scope
- Approaches
- Applications

Synaptic Data Source: example 1

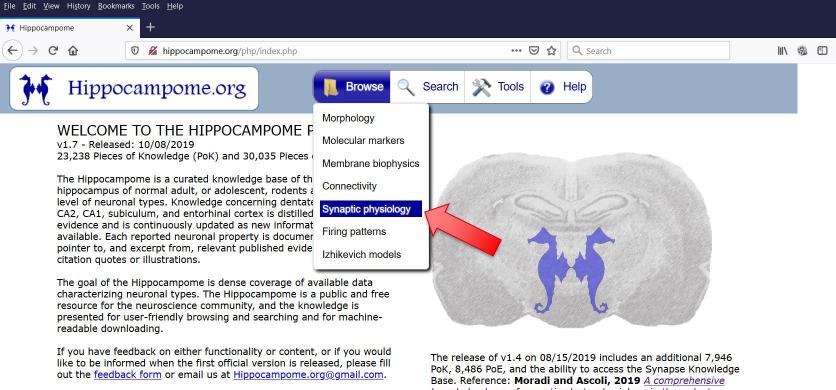

terms and phrases used on this website. Reference: Hamilton et al.,

with neuron types and properties. Brain Informatics (2016);

doi:10.1007/s40708-016-0053-3.

Type here to search

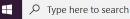
2016 Name-calling in the hippocampus (and beyond): coming to terms


Expression Profiles of Morphologically Defined Hippocampal

Hippocampus 2019 Oct 9; doi: 10.1002/hipo.23165.

Neuron Types: Empirical Evidence and Relational Inferences.

^ 🐯 🔚 🦟 ITA



knowledge base of synaptic electrophysiology in the rodent The release of v1.0 on 09/23/2015 includes 3,697 PoK and 13,888 PoE. hippocampal formation. Hippocampus 2019 Aug 31; doi: Reference: Wheeler et al., 2015. Hippocampome.org: A knowledge https://doi.org/10.1002/hipo.23148. base of neuron types in the rodent hippocampus, eLife 2015;4:e09960.

> The release of v1.5 on 09/06/2019 includes an additional 830 PoK, 77 PoE, and relational expression inferences in the knowledge base. Reference: White, et al., 2019 Molecular Expression Profiles of Morphologically Defined Hippocampal Neuron Types: Empirical Evidence and Relational Inferences. Hippocampus 2019 Oct 9; doi: 10.1002/hipo.23165.

hippocampome.org/php/synaptome.php

The release of v1.1 on 10/17/2016 includes 3.697 PoK, 13,888 PoE,

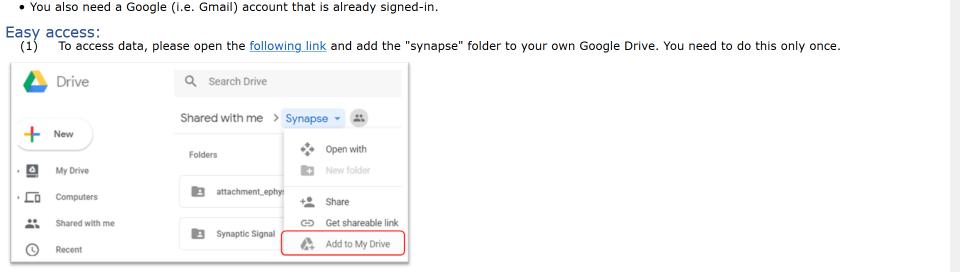
and the Neuron Term Portal, which allows one to view definitions for

with neuron types and properties. Brain Informatics (2016);

doi:10.1007/e40708-016-0053-3.

terms and phrases used on this website. Reference: Hamilton et al.,

2016 Name-calling in the hippocampus (and beyond): coming to terms



Go to the "synapse" folder and make a copy of the "Hippocampome.org/Synapse" and "FormTemplateReview" files. You need to do this step only once

as well. The copied files will appear in the root of your drive, so you need to go back to "My Drive" to access these copies.

P

• Our data mining tool relies on web technologies currently available in Chromium-based browsers, including Google Chrome, Opera and Chromium itself.

■ ··· ☑ ☆ □ Q Search

File Edit View History Bookmarks Tools Help

These technologies will soon be available in Mozilla Firefox and Microsoft Edge as well.

Hippocampome.org Synapse Knowledge Base

Q Search Drive

Synaptome

 \leftarrow) \rightarrow \times \bullet

Requirements:

Looking up hippocampome.org...

P Type here to search

Received: 17 May 2019

Revised: 16 July 2019

Accepted: 6 August 2019

DOI: 10.1002/hipo.23148

RESEARCH ARTICLE

A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation

Keivan Moradi¹ | Giorgio A. Ascoli^{1,2}

Hippocampome.org

- +1,200 published journal articles
- 8 different signal modalities
- 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons
- data structure that both reflects the differences and maintains the existing relations among experimental modalities
- 40,000 synaptic data entities
- covering 88% of the 3,120 potential connections

ummary

In transverse hippocampal slices, paired recording is done from non-Fast-Spiking neurons (max frequency = 25±4 Hz (n=14)) within DG:SG and DG:H border so-called non-FS IN to DG Granule cells in voltage-clamp mode. Non-FS INs had CB1R+ INs (Axons:DG:7170 & DSI+), HICAP (Axons:DG:7170 & DSI-), HIPP (Axons:DG:1700 AND Dendrites:DG:0002) and HIPP-like (Axons:DG:1700 AND Dendrites:DG:2222) subtypes. One presynaptic instance had DG HIPP-CAP (-)1102 morphology. Authors have grouped all the presynaptic non-FS IN neuron types when analyzing the synaptic electrophysiology data.

Ratios and Notes

Connectivity: 151:391 pairs were connected. Types: 6:39 neurons in DG:SG and DG:H border were so-called FS IN (DG Basket PV+), 6:39 CB1+ IN (probably DG Basket CCK+), 14:39 DG HICAP, and 9:39 DG HIPP (probably DG HIPP or DG HIPP-CAP) or 4:39 HIPP-like (DG MOLAX).

Solutions

Bath: 125 NaCl, 25 NaHCO₃, 1.25 NaH₂PO₄, 2.5 KCl, 2 CaCl₂, 1 MgCl₂.

Whole-cell pipette: 15 K-gluconate, 140 KCl, 0.1 EGTA, 2 MgCl₂, 4 Na₂ATP, 10 HEPES

naptic Signa

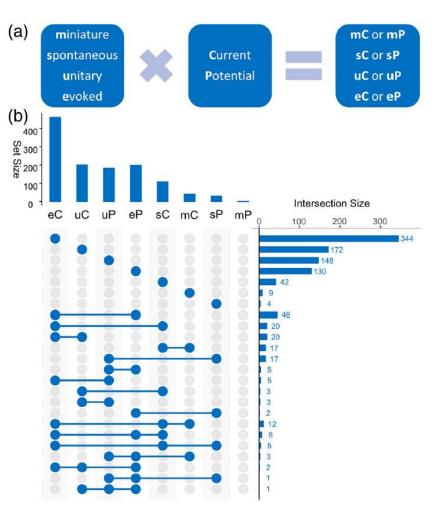
 V_m = -80 {without V_i correction}; -84.91 {with V_i correction}@3300073 { V_h } Calculated E_{rev} : -0.09 {GABA_A}; 0.21 {GABA_A-gluconate Permeable}; -85.92 {GABA_B}

Recorded Modality: uPSC

Assumptions

Any non-Fast-Spiking neuron (max_fr:<50) with soma in DG:SG and DG:H border and most of their axons in DG:SM is a potential presynaptic cell type. DG HICAP is the main presynaptic population based on cell type ratios reported in this paper.

Machine-readable Search Query


```
Connection:(
Presynaptic:(
 (Neurotransmitter:Inhibitory AND
 Morphology:(
   Dendrites:DG:???2
                             AND
   Axons:DG:???0
                             AND
   (Soma:DG:??1?
                             OR
   Soma:DG:???1))
                             NOT
  Electrophysiology:max_fr:>50,
 Include:(1046)
Postsynaptic:(
  Morphology:(
   Axons:DG:0001
                            AND
   Dendrites: DG:2200)
```

Search Engine Results

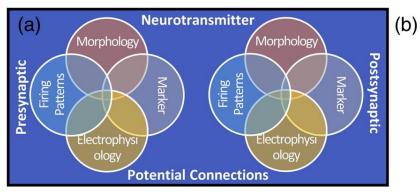
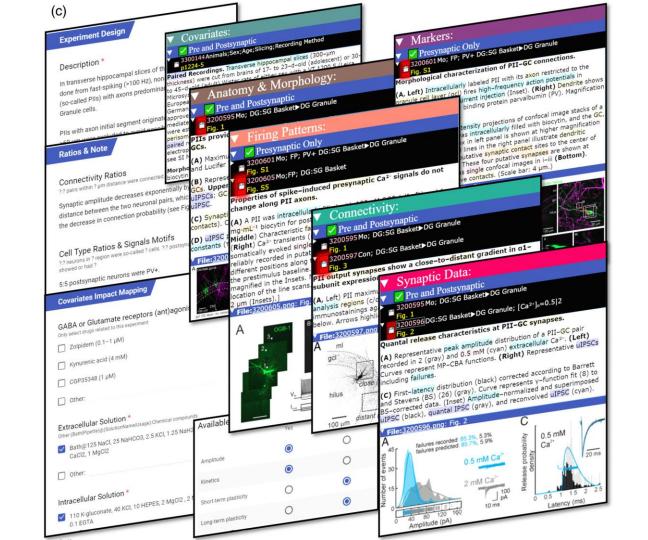

Presynaptic	Postsynaptic	
DG Basket CCK+	DG Granule	
DG HICAP	DG Granule	
DG HIPP-CAP	DG Granule	
DG MOLAX	DG Granule	
DG Outer Molecular Layer	DG Granule	
DG HIPP	DG Granule	
DG HIPP PMID: 24453325 eID: 67 di	_	

FIGURE 4 Data modalities. (a) Synaptic signals can be generated in eight different modalities depending on stimulation methods (e: evoked, u: unitary, s: spontaneous, and m: miniature) and response type (C: current or P: potential). (b) The most prevalent modality among all extracted data (upper chart) is eC and the most prevalent combination of multiple modalities in the same experiment (right chart) is between eC and eP [Color figure can be viewed at wileyonlinelibrary.com]



Potential Connections			
Presynaptic Cell Types	Postsynaptic Cell Types		
DG Basket	DG Granule		

Experiment IDs			
Proper	Fuzzy-High	Fuzzy-Low	
66; 73; 75;	50; 105; 133; 144; 145; 146;	27; 39; 41; 86;	
132; 165; 331	147; 148; 158; 182; 332	88; 111; 112;	

We consider a mapping as "proper" only if the corresponding experiment matches a single potential connection. For all other "fuzzy" mappings that involve multiple potential connections, we assign high- and low-confidence to the more and less likely neuron type pair(s), respectively.

(d)

Measure	Value	Reference ID	Note	
1 st Failure Rate (%)	4.36±8.54 [0 to 39.95] (n=32)	3200595	from 250 to 650 µm distance between pairs, adolescent P17-23	
Average Amplitude (pA)	-146.16±22.23 [-552 to -8.75] (n=32)	3200595,		
Weighted Decay Time Constant (ms)	7.06±0.42 [3.18 to 12.74] (n=32)	3200602		
Latency (ms)	1.04±0.06 [0.79 to 1.3] (n=7)	3200595, 3200596	Linear change from 230 to 405 µm distance between pairs	
20-80% Rise Time (ms)	0.31±0.02 [0.17 to 0.63] (n=31)	3200602	Calculated by Hippocampome.org	
50-50% Rise-to-Decay Time (ms)	0.32±0.02 [0.24 to 0.42] (n=6)	3200596		

FIGURE 7 Data access. The described knowledge base of synaptic electrophysiology is freely available online. (a) Potential connections are searchable by the properties of the presynaptic and postsynaptic neuron types. (b) They are linked to experiment IDs categorized by mapping confidence. (c) The details and summaries of any experiment (e.g., experiment with eID 331) can be reviewed while checking excerpts as evidence and (d) the extracted data is directly accessible. This example is from Struber, Jonas, and Bartos (2015) [Color figure can be viewed at wileyonlinelibrary.com]

Synaptic Data Source: example 2

https://portal.brain-map.org/explore/connectivity/synaptic-physiology.

RESEARCH ARTICLE

NEUROSCIENCE

Local connectivity and synaptic dynamics in mouse and human neocortex

Luke Campagnola¹+, Stephanie C. Seeman¹+, Thomas Chartrand¹, Lisa Kim¹, Alex Hoggarth¹, Clare Gamlin¹, Shinya Ito¹, Jessica Trinh¹, Pasha Davoudian¹, Cristina Radaelli¹, Mean-Hwan Kim¹, Travis Hage¹, Thomas Braun², Lauren Alfiler¹, Julia Andrade¹, Phillip Bohn¹, Rachel Dalley¹, Alex Henry¹, Sara Kebede¹, Alice Mukora¹, David Sandman¹, Grace Williams¹, Rachael Larsen¹, Corinne Teeter1‡, Tanya L. Daigle1, Kyla Berry18, Nadia Dotson1, Rachel Enstrom1, Melissa Gorham1, Madie Hupp¹, Samuel Dingman Lee¹, Kiet Ngo¹, Philip R. Nicovich¹, Lydia Potekhina¹, Shea Ransford¹, Amanda Gary¹, Jeff Goldy¹, Delissa McMillen¹, Trangthanh Pham¹, Michael Tieu¹, La'Akea Siverts¹, Miranda Walker¹, Colin Farrell¹, Martin Schroedter¹, Cliff Slaughterbeck¹, Charles Cobb³, Richard Ellenbogen⁴, Ryder P. Gwinn⁵, C. Dirk Keene⁶, Andrew L. Ko^{4,7}, Jeffrey G. Ojemann^{4,7}, Daniel L. Silbergeld⁴, Daniel Carev¹, Tamara Casper¹, Kirsten Crichton¹, Michael Clark¹, Nick Dee¹, Lauren Ellingwood¹, Jessica Gloe¹, Matthew Kroll¹, Josef Sulc¹, Herman Tung¹, Katherine Wadhwani¹, Krissy Brouner¹, Tom Egdorf¹, Michelle Maxwell¹, Medea McGraw¹, Christina Alice Pom¹, Augustin Ruiz¹, Jasmine Bomben¹, David Feng¹, Nika Hejazinia¹, Shu Shi¹, Aaron Szafer¹, Wayne Wakeman¹, John Phillips¹, Amy Bernard¹, Luke Esposito¹, Florence D. D'Orazi¹, Susan Sunkin¹. Kimberly Smith¹. Bosilika Tasic¹. Anton Arkhipov¹. Staci Sorensen¹. Ed Lein¹. Christof Koch¹, Gabe Murphy¹, Hongkui Zeng¹, Tim Jarsky¹*

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.

Home > Explore > Connectivity Matrices > Synaptic Physiology

Synaptic Physiology

The Allen Institute for Brain Science aims to further our understanding of neuronal cell types by describing the patterns of connectivity among them and characterizing their synaptic signaling. The Synaptic Physiology project advances this goal by examining the intralaminar connectivity between neuronal subclasses? in human and mouse cortex via in vitro electrophysiology. This dataset is readily accessible and produced using standardized experimental methods and analysis. The applications of the dataset are wide-ranging, as the data are suited to parameterize synaptic modeling studies, address higher-order connectivity questions, and inform current comprehension of the cortical microcircuit.

synaptic connectivity

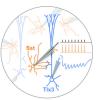
Measurements of connection probability between cortical cell subclasses and the relationship to intersomatic distance, more...

strength & kinetics

Synaptic strength, latency, and rise/decay kinetics derived from current and voltage clamp recordings.

short-term plasticity

Short-term plasticity induced by stimulus trains with varying spike timing, more...


How to use the Synaptic Physiology Dataset

Explore the interplay of features such as synaptic strength, facilitation, depression, and more via online Jupyter notebooks or interactive desktop tools. Alternatively, access the data directly via our Python API.

More on how to access the data

Methods

Connectivity among cell subclasses was investigated via multiple-patchclamp electrophysiology in human and mouse cortical slices. Transgenic mice enabled two cell subclass populations to be visualized in a single slice and to target connections among them.

More on experimental methods

Connections between recorded neuron pairs were identified and properties such as strength, kinetics, and short-term plasticity were characterized to identify how synaptic properties vary among different cell classes.

More on analysis methods

Chat with us on the Community Forum

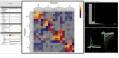
Stay up-to-date on what's coming

Home > Explore > Connectivity Matrices > Synaptic Physiology > Interact with the Synaptic Physiology Dataset

Interact with the Synaptic Physiology Dataset

The Synaptic Physiology Dataset allows users to explore interactions between cell subclasses in mouse and human cortex. There are a variety of ways to access the data based on your interests.

Online Jupyter notebooks


Hosted by mybinder.org, these notebooks provide an interactive environment for accessing, analyzing, and visualizing results from the Synaptic Physiology Dataset. This provides a quick way to begin interacting with the data in your browser, but some Python experience is recommended.

Note: mybinder.org instances will shut down after 10 minutes of inactivity. These are great for quickly exploring the dataset, but not appropriate for prolonged data analysis.

Explore notebooks in MyBinder

Allen Institute ▼ Updates & Support ▼

Interactive desktop tools

Explore the Synaptic Physiology Dataset with interactive tools. Choose cell classes of interest and synaptic metrics to see an overview of cortical synaptic physiology. Requires installation of a Python programming environment on your local machine. Getting started with Synaptic Physiology tools

TM Access the data directly via our API

The Synaptic Physiology Python programming packages provide access to three sqlite databases, described below, as well as the original NWBv1 (HDF5) data files. Getting started with the Synaptic Physiology API

Synaptic Physiology Database

The Synaptic Physiology Dataset is available as three different sqlite files, each increasing in content and size. It is recommended that you download the database files directly from our API or contact us for other options.

	Small (~170 MB)	Medium (~7 GB)	Full (>160 GB)
experiment metadata tissue source, experimental conditions	✓	✓	✓
chemical / electrical connections connection probability	✓	✓	✓
cell properties transgenic class, layer, morphology, intrinsic physiology	✓	✓	✓
per-connection average properties strength, kinetics, dynamics, averaged synaptic responses, electrical connection properties	✓	✓	✓
per-connection synaptic release models quantal release parameters, short-term plasticity	✓	✓	✓
per-stimulus response properties curve fits to individual synaptic responses		✓	✓
per-stimulus spike properties timing and measurements of individual presynaptic spikes		✓	✓
stimulus / recording metadata		✓	✓
per-stimulus response data time-series data for every presynaptic spike and corresponding postsynaptic recording			✓

Visit repo

Copy Binder link

Quit

2.53 kB

233 B

6 months ago

6 months ago

Files Running Clusters

pipeline_overview.txt

requirements.txt

Select items to perform actions on them. Upload New **▼** □ 0 ■ / doc Last Modified File size Name **↓** seconds ago source 6 months ago accessing_raw_data.ipynb 6 months ago 135 kB connectivity.ipynb 6 months ago 291 kB connectivity_adjustments.ipynb 6 months ago 533 kB Navigate full database database_tutorial.ipynb 6 months ago 5.38 kB Reproduce all the analysis in publication gap_junctions.ipynb 6 months ago 74.9 kB Download raw data reciprocal_connectivity.ipynb 6 months ago 75.8 kB short_term_plasticity.ipynb 6 months ago 101 kB synaptic_kinetics.ipynb 6 months ago 187 kB synaptic_strength.ipynb 6 months ago 113 kB tutorial.ipynb 6 months ago 436 kB Makefile 6 months ago 611 B

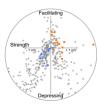
Synaptic Physiology

The Allen Institute for Brain Science aims to further our understanding of neuronal cell types by describing the patterns of connectivity among them and characterizing their synaptic signaling. The Synaptic Physiology project advances this goal by examining the intralaminar connectivity between neuronal subclasses? in human and mouse cortex via in vitro electrophysiology. This dataset is readily accessible and produced using standardized experimental methods and analysis. The applications of the dataset are wide-ranging, as the data are suited to parameterize synaptic modeling studies, address higher-order connectivity questions, and inform current comprehension of the cortical microcircuit.

synaptic connectivity

Measurements of connection probability between cortical cell subclasses and the relationship to intersomatic distance, more...

strength & kinetics



Synaptic strength, latency, and rise/decay kinetics derived from current and voltage clamp recordings.

short-term plasticity

Short-term plasticity induced by stimulus trains with varying spike timing, more...

How to use the Synaptic Physiology Dataset

Explore the interplay of features such as synaptic strength, facilitation, depression, and more via online Jupyter notebooks or interactive desktop tools. Alternatively, access the data directly via our Python API.

More on how to access the data

Methods

Connectivity among cell subclasses was investigated via multiple-patchclamp electrophysiology in human and mouse cortical slices. Transgenic mice enabled two cell subclass populations to be visualized in a single slice and to target connections among them.

More on experimental methods

Connections between recorded neuron pairs were identified and properties such as strength, kinetics, and short-term plasticity were characterized to identify how synaptic properties vary among different cell classes.

More on analysis methods

Chat with us on the Community Forum Stay up-to-date on what's coming

Mar 3

scseeman

Mar 15

Hi Natali,

I'm not sure why that is happening, but it appears to be the way filter_exprs is working. I can assure you that there are data with STP in the dataset. While we investigate that you can do this same filtering but outside of the query. To do this I would use your query here but remove the filter_exprs (also note that there should be no underscore in standard multipatch). Then you can use a list comprehension to get just pairs from that query which have STP data like so:

```
query = db.pair_query(
    experiment_type='standard multipatch',  # filter: just multipatch experiments
    species='human',  # filter: only human data
    synapse=True,  # filter: only cell pairs connected by
)
pairs = query.all()
print(len(pairs))
>>329
pairs_with_stp = [p for p in pairs if p.dynamics.stp_induction_50hz is not None]
print(len(pairs_with_stp))
>> 185
```

11 / 28 Mar 15

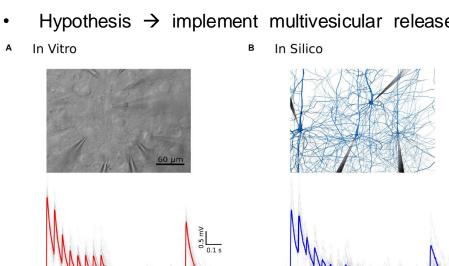
Jun 21

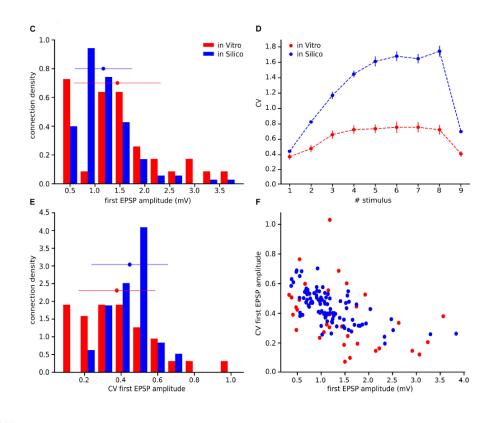
How to apply to research

ORIGINAL RESEARCH

published: 15 October 2019 doi: 10.3389/fnsyn.2019.00029

Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex

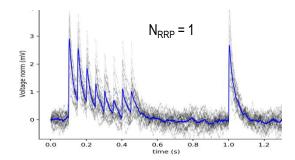

Natalí Barros-Zulaica^{1*}, John Rahmon¹, Giuseppe Chindemi¹, Rodrigo Perin², Henry Markram^{1,2}, Eilif Muller^{1†} and Srikanth Ramaswamy^{1*†}

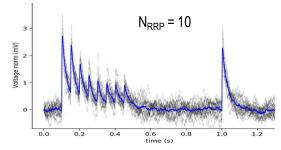

¹ Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland, ² Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

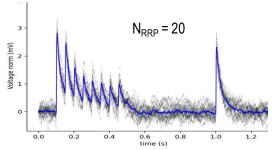
The problem

- Model synapses → univesicular (Nrrp = 1)
- Universicular release could capture the average behavior of the synapse
- It did not capture the variability of the following EPSP (CV)
- Hypothesis → implement multivesicular release

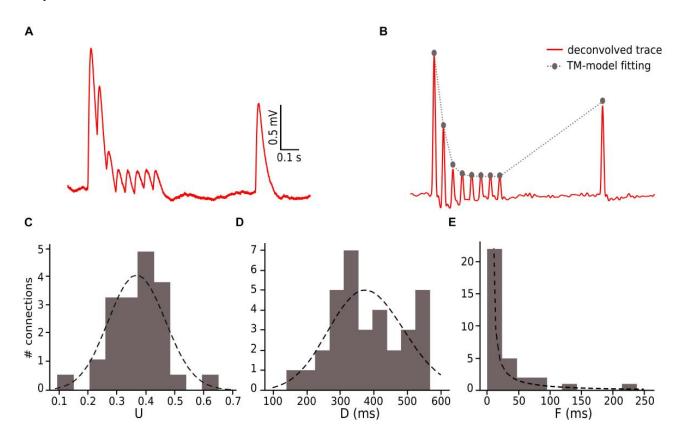
UVR vs MVR


Importance:

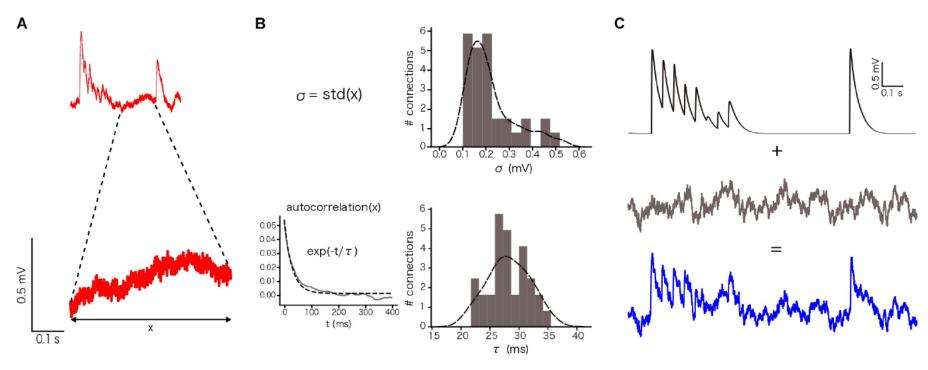

- 1. Synaptic transmission is the bases of neuronal communication
- 2. Synaptic variability (noise) plays an important role in information coding in the cortex. (Nolte et al., 2019)


UVR (Univesicular release) : N_{RRP} = number of connections

MVR (Multivesicular release): several vesicles per active zone -Increase the dynamics range of the synapse



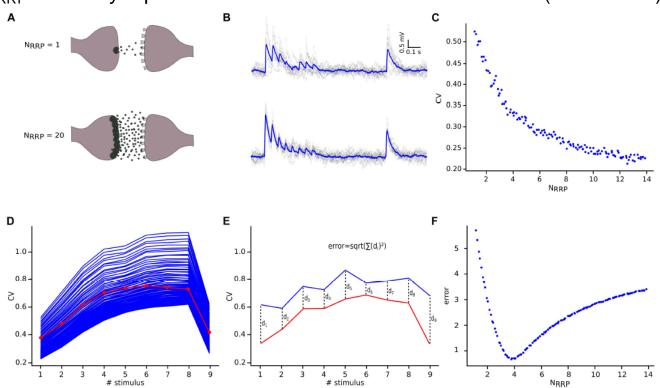
Method: step 1


U, D, F parameters for the TM model obtained from 33 in vitro connections

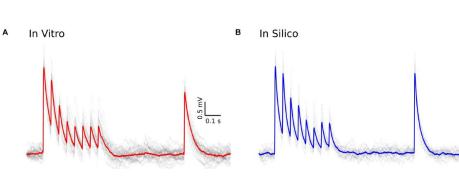
Method: step 2

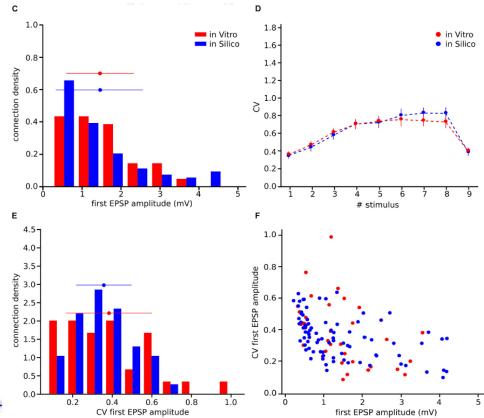
Model membrane voltage noise to completely capture synaptic variability:

Ornstein-Uhlenbeck Process



Method: step 3


Simulations with different N_{RRP}


Increasing $N_{RRP} \rightarrow$ the synapse become more reliable or less variable (smaller CV)

Result

After optimizing the N_{RRP} , the CV of the following EPSPs are matched

Predictions for other connections \rightarrow Eureka moment!

Connection type	Literature data		Jack-Knife conversion	Prediction
	cv		cv	N _{RRP}
L23_NBC_LBC-L23_PC	0.40 @ 0.09 (Wang et al., 200	02)	0.38 ± 0.21	1.96 ± 0.98
L23_PC-L23_PC	0.33 @ 0.18 (Feldmeyer et al.	., 2006)	0.48 ± 0.23	2.60 ± 1.28
L4_SSC-L23_PC L4_SSC-L5_TPC:C L5_TTPC-L5_SBC L5_TTPC-L5_TTPC	Article Structure and synapse https://doi.org/10.1038/s41586-020-03134-2 Received: 12 December 2019 Accepted: 24 November 2020 Published online: 13 January 2021 Check for updates	Function of a new Simone Holler ¹ , German Köstinger ¹ , Kevan A Ken J. Stratford ¹ In 1986, electron microscopy was used to system of a roundworm, the nematode C study, high-throughput electron-micros reconstructions of much larger mammal Nevertheless, it remains unknown how the physiological transmission strength—a k from neuronal wiring diagrams. Here we synaptically connected pyramidal neuro correlated light microscopy and high-res synaptic contacts between the recorded between synapses size and strength, proviphysiological weights to synapses reconallysis also reveals that synapses contain on average. This challenges existing releating the neocortical synapses operate within	A. C. Martin', Gregor F. P. Schuhknecht ¹⁵³ & Dereconstruct by hand the entire nervous interest and in the second control of the s	1.81 ± 0.37 1.26 ± 0.50 1.82 ± 0.90 2.84 ± 1.34

Key points

- Estimating the number of independent release sites (N_{RRP}) experimentally is very challenging
- A modeling approach is used to quantify N_{RRP} on existing traces
- It shows that N_{RRP} has an impact on the synaptic transmission making it more or less reliable ('noisy')
- Model 'baseline' noise

Summary 3

- Given the diversity of synapses even within the same brain region, public data repositories are often region-specific
- The number of synaptic types in the brain is extremely high and each of them is potentially unique
- Considering the cost of fully characterize one single synapse, it is clear how public resources and modeling tools are essential to move the research forward

Lecture Summary

- The huge number of synapses in the brain, their high diversity, and their complex machinery challenge researchers
- Biophysical models are only possible for few synapses, while we have adopt phenomenological models once the number of synapses grows in our models
- Even phenomenological models can be characterized by many parameters
- We have to deal with very sparse data
- In the next lecture, we will see how the synapses can change for long periods of time even forever

What you have learnt:

- Definitions: electrical synapse, chemical synapse, axonal boutons, receptors
- AMPA, NMDA and GABA receptors
- Synaptic plasticity: STP (short term plasticity)
- Three ways of modelling synapses: understand the three models, their bases and their parameters, no need to know exactly the equations.
 - Equivalent circuit
 - Quantal release model
 - Tsodyks-Markram model

